
SWEDISH INSTITUTE FOR SYSTEMS DEVELOPMENT

SISU REPORT 1992 : 01
ISSN 1103- 1700

ISRN SISU-REP--Ol--SE

THE ENTITY RELATIONSHIP TIME MODEL
AND THE CONCEPTUAL RULE LANGUAGE

C. THEODOULIDIS
P. LOUCOPOULOS

B. WANGLER

ISlsul
SVENSKA INSTITUTET FOR SYSTEMUTVECKLING

The Entity Relationship Time Model and
the Conceptual Rule Language

Abstract 1

1. In troduction 2

2. The Entity-Relationship-Time Mode!... 7

2.1 Basic Concepts and Externals 7

2.2 Time Semantics 12

2.3 Complex Object Semantics 15

3. The Conceptual Rule Language 19

3.1 Constraint Rules 19

3.2 Derivation Rules 3J

4. COnclusioDS. 35

References 36

The Swedish Institute for Systems Development Report Series serves
two main purposes.

As a considerable part of the our work is done in international
collaboration it is important to make the results available to our
member organizations in Sweden.

Publishing in English also serves the purpose of opening the results of
the Institute to our colleagues abroad.

This Report on "The Entity Relationship Time Model and the
Conceptual Rule Language" by C. Theodoulidis, P. Loucopoulos, B.
Wangler is a result of the ESPRIT-project TEMPORA. It is published
with the kind consent of the authors whom we thank warmly for this
permission.

Kista september 1992

The Entity Relationship Time Model and the Conceptual Rule Language

The Entity Relationship Time Model and
the Conceptual Rule Language

C. Theodoulidis1, P. Loucopoulos:1, B. Wangler2

1 Department of Computation
UMIST
P.O. Box 88
Manchester, M60 1QD
U.K

2 Swedish Institute for Systems
Development (SISU)
Box 1250
S-164 28 KISTA
SWEDEN

Abstract
Recent years have witnessed an increased demand for information
systems which cover a wide spectrum of application domains. This,
inevitably, has had the effect of demanding conceptual models of
enhanced functionality and expressive power than is currently
possible in practice. This paper introduces the TEMPORA modelling
paradigm for developing information system applications from a
unified perspective which deals with definitional, intentional and
constrain knowledge. The paper discusses in detail two of the
components of the TEMPORA conceptual model namely, the Entity-
Relationship-Time (ERT) model and the Conceptual Rule Language
(CRL). The ERT model deals with the structural aspects including time
and complex objects modelling whereas the CRL language deals with
constraints and derivations on the ERT model.

1.

The Entity Relationship Time Model and the Conceptual Rule Language

1. Introduction
In recent years there has been an increasing demand for enhanced
functionality of information systems that deal with applications
beyond the traditional data processing type. It has also been argued
that the development of the next generation of information systems
will require the adoption of approaches which provide a closer
alignment between business policy and system operation [van Assche
et aI, 1988; Loucopoulos, 1989].A number of issues arising from these
requirements are addressed within the TEMPORA' project [Loucopoulos
et aI, 1990] which provides the framework for the work reported in
this paper. The need for enhanced system functionality is addressed
through the use of a conceptual modelling formalism which caters
for: the modelling of business rules, the modelling of time and the
modelling of complex objects. This formalism is supported at the
database level by an extension of the relational model with temporal
semantics and an execution mechanism that provides active database
functionality.
The TEMPORA paradigm advocates that development of an
information system should be viewed as the task of developing or
augmenting the policy knowledge base of an organisation, which is
used throughout the software development process. Within TEMPORA,
this knowledge base is concerned with the definition of the principal
facts and operations within the organisation together with the rules
which guide these operations and ensure the integrity of these facts.

The structural properties of an application are expressed in terms of
the ERT model. The process component deals with the definition of
operations. A process is the smallest independent unit of business
activity of meaning, initiated by a specific trigger and which, when

, The TEMPORA project has been partly funded by the Commission of the European
Communities under the ESPRIT R&D programme. The TEMPORA project is a
collaborative project between: BIM, Belgium; Hitec, Greece; Imperial College, UK;
LPA, UK; SINTEF, Norway; SISU, Sweden; University of Liege, Belgium and UMIST,
UK. SISU is sponsored by the National Swedish Board for Technical Development
(STU), ERICSSON and Swedish Telecomm.

2

The Entity Relationship Time Model and the Conceptual Rule Language

complete, leaves the business in a consistent state. The analysis of
processes in terms of the ERT model results in a set of primitive actions
suffered by an entity such as 'salary increase'. Control of the
behaviour of a system is modelled in terms of rules. Two general
classes of rules are recognised: constraint rules which are concerned
with the integrity of the database, derivation rules which are
concerned with the derivation of new information and action rules
which are concerned with the control of transactions.

This paper is concerned with a detailed description of the ERT model
and the constraint rules and derivation rules of the CRL language.
Details of earlier work in the process and rule models are reported in
[van Assche et aI, 1988; Loucopoulos, 1989,Theodoulidis et aI, 1990;
Loucopouloset aI, 1991,McBrien et aI, 1991].

The ERT model uses as its basic structure the Entity-Relationship
approach in order to preserve the well known advantages of this
approach namely, graphical display, increased readability and wide
acceptance by practitioners. The basic mechanism differs from the
original Entity Relationship model [Chen, 1976] in that it regards any
association between objects in the unified form of a relationship. Thus,
the conceptually unnecessary distinction between attributeships and
relationships [Kent, 1979; Nijssen, 1988] is avoided. On this basic
mechanism the ERT model is extended in its semantics and graphical
notation in two directions: the modelling of time; and the modelling of
complex objects.

The need for modelling time explicitly is that, for many applications
when an information item becomes outdated, it need not be forgotten.
The lack of temporal support raises serious problems in many cases.
For example, conventional DBMS cannot support historical queries
about past status, let alone trend analysis which is essential for
applications such as Decision Support Systems (nss). The need to
handle time more comprehensively surfaced in the early 70's in the
area of medical information systems where a patient's history is
particularly important [Wiederhold et aI, 1975].Since these early days
there has been a large amount of research in the nature of time in
computer-based information systems and the handling of the
temporal aspects of data [Ariav & Clifford, 1984; Ahn & Snodgrass,
1988; Ben-Zvi, 1982; Lum et aI, 1984; Dadam et aI, 1984]. Research
interest in the time modelling area has increased dramatically over
the past decade as shown by published bibliographies [McKenzie,
1986] and comparative studies [Theodoulidis & Loucopoulos, 1991].

3

The Entity Relationship Time Model and the Conceptual Rule Language

Without temporal support, many applications have been forced to
manage temporal information in an ad-hoc manner. Recent research
work attempts to overcome this problem from a number of different
perspectives. The ERAE model [Dubois et aI, 1986; Hagelstein, 1988]
extends the semantics of the entity-relationship model with a
distinguished type Event as one of its basic constructs. The ERAE
approach considers only the requirements specification area without
providing any integration to subsequent activities towards the
implementation of a database system. Furthermore, the language is
confined to simple objects and avoids the issue of modelling objects
with component properties. The CML language uses an object-centered
viewpoint and includes time as a primitive notion [Loki, 1986; Jarke,
1989]. This language has rich time semantics and the modelling of
complex objects is implicitly defined in the object-centred framework
adopted by the language. However, because it deals with two time
dimensions and also caters for the modelling of relative temporal
information, its efficient use in large database applications is
debatable. Furthermore, it lacks a notation which is conducive to
concept elicitation from and validation by end users.

The modelling of complex objects [Adiba, 1987] arises from the need to
deal with applications which require the management of objects of
arbitrary complexity. For example, in CAD/CAM or CASE applications
one needs to be able to deal with objects that consist of a number of
components and to reason for them whilst being able to deal with their
components. Traditional data models fail to deal with this
requirement; the structural constraints for example, of the relational
model [Codd, 1970] force a developer to decompose the representation
of a complex object into a set of relations. Extensions to the relational
model include new types of attributes [Haskin, 1982] and the
relaxation of the first normal form constraint [Abiteboul et aI, 1989].
In both cases modelling of complex objects is carried out from a
machine rather than a user-oriented perspective. In semantic
modelling Dayal [1987] proposes an extension of DAPLEX [Shipman,
1981] as the means for dealing with complex objects. Whilst this
approach is based on work which has the formally attractive feature
of representing everything as an object, from a conceptual modelling
perspective it is important to permit views which more naturally
reflect a user's conception ofthe application domain.

The role of the CRL is twofold. Firstly, it is concerned with constraints
placed upon the elements of ERT and with the derivation of new
information based on existing information. Secondly, it is concerned

4

The Entity Relationship Time Model and the Conceptual Rule Language

with the eligibility for the firing of operations and constraints placed
on their order of execution. In this paper, only the first type of CRL
expressions are discussed namely, the constraint rules and derivation
rules. The constraint rules express restrictions on individual ERT

states or state transitions. These rules are further classified to static
constraint rules and transition constraint rules based on whether they
refer to one state only or whether they refer to more than one states.
The derivation rules are also classified to transition derivation rules
and static derivation rules depending on whether the derived ERT
components are time-varying or not.

The CRL formalism possesses a number of features in order to be used
as part of the TEMPORA conceptual modelling formalism. These
features are identified as follows:

• orthogonality and minimality of concepts i.e., controlled
redundancy.

• ease of construction
• ease of communication
• well defined interface with level models

The CRL should have orthogonal concepts in two dimensions. Firstly,
its own concepts should not have overlapping semantics in order to
make clear distinction what it is used where and when. Secondly, its
concepts must not express exactly the same things with the other two
components of the requirements specification formalism in order to
avoid redundancies and specificational overhead. Furthermore, its
concepts and constructs must be sufficient to express all the intended
knowledge. Limited redundancy is permitted only when it increases
its understandability but not to the level that introduces ambiguity. In
addition, CRL must be easily used and understood by everyone involved
in the requirements specification process with the minimum of
training and expertise. Finally, its interface with the other
components of the conceptual modelling formalism must be well
defined in order to obtain a strong synergetic effect between the
different components of a requirements specification. Thus, the result
will be an effectively integrated modelling formalism with the
expressive power and the necessary structuring mechanisms.

Section 2 of the paper describes the basic formalism of the ERT model
in terms of the basic concepts, the external graphical notation, the
semantics of complex objects and the semantics of time. Section 3
introduces the CRL language in terms of the classification schema for

5

The Entity Relationship Time Model and the Conceptual Rule Language

its expressions and exemplifies each kind. Section 4 concludes the
paper by presenting the current status of the work and discussing
future research directions.

6

The Entity Relationship Time Model and the Conceptual Rule Language

2. The Entity-Relationship-Time Model

2.1. Basic Concepts and Externals

The orientation of the ERT model is the Entity-Relationship formalism
which makes a clear distinction between objects and relationships. On
this basis, the ERT model offers a number of features which are
considered to be necessary for the modelling of complex database
applications. Specifically, it accommodates the explicit modelling of
time, taxonomic hierarchies and complex objects. The different
aspects of data abstraction that are dealt with in the ERT model are:
classification, generalisation, aggregation and grouping.

The most primitive concept in ERT is that of a class which is defined as
a collection of individual objects that have common properties i.e., that
are of the same type. In an ERT schema only classes of objects are
specified. In addition, every relationship is viewed as a named set of
two (entity or value, role) pairs where each role expresses the way
that a specific entity or value is involved in a relationship. These two
named roles are called relationship involvements and for
completeness reasons, they are always required in an ERT schema. By
using relationship involvements we have the possibility to express
each relationship with two sentences which are syntactically different
but semantically equivalent.

Time is introduced in ERT as a distinguished class called time period
class. More specifically, each time varying simple entity class or
complex entity class and each time varying relationship class is
timestamped with a time period class. That is, a time period is
assigned to every time varying piece of information that exists in an
ERT schema.
The term time varying refers to pieces of information that the
modeller wants to keep track of their evolution i.e. to keep their
history and consequently, to be able to reason about them. For
example, for each simple entity class or complex entity class, a time
period might be associated which represents the period of time during
which an entity is modelled. This is referred to as the existence period
of an entity. The same argument applies also to relationships i.e., each
time varying relationship might be associated with a time period

7

The Entity Relationship Time Model and the Conceptual Rule Language

which represents the period during which the relationship is valid.
This is referred to as the validity period of a relationship.

Besides the objects for which history is kept, another type of object,
called event is also supported. These are objects that prevail for only
one time unit and thus, the notion of history does not apply to them.
Alternatively, one can say that these objects become history as soon as
they occur. Events are denoted by defining the duration of their
timestamp to be one time unit.

As a consequence of the adopted timestamping semantics, only the
event time is modelled in ERT; i.e. the time that a particular piece of
information models reality. At a first glance this might seem to be
restrictive in the sense that the captured information is not
semantically as rich. However, this assumption is considered to be
necessary in order to keep the proposed approach manageable and to
permit computational attractive algorithms for reasoning about time.

For each timestamp its granularity should be defined. The
granularities however, should be carefully chosen as they affect the
relative ordering of events stored in the database. For example, if DATE
is the granularity of the SHIPMENT object, then two shipments received
on the same date will be treated to have occurred at the same time
even if their exact time of arrival differs.

Another distinguished class that is introduced in ERT is that of a
complex object. The distinction between simple and complex objects is
that simple objects are irreducible in the sense they cannot be
decomposed into other objects and thus, they are capable of
independent existence whereas a complex object is composed of two
or more objects and thus, its existence might depend on the existence
of its component objects. The relationship between a complex object
and its component objects is modelled through the use of the
IS_PART_OF relationship.

The ERT model accommodates explicitly generalisation/ specialisation
hierarchies. This is done through a distinguished ISA relationship
which has the usual set theoretic semantics. Furthermore, for each
relationship involvement, a user supplied constraint rule must be
defined which restricts the number of times an entity or value can
participate in this involvement. This constraint is called cardinality
constraint and it is applied to the instances of this relationship
involvement by restricting its population.
Each of the simple entity classes and user defined relationship classes

8

The Entity Relationship Time Model and the Conceptual Rule Language

in an ERT schema can be specified as derived. This implies that its
instances are not stored by default but they can be obtained
dynamically i.e. when needed, using the derivation rules. For each
such derivable component, there is exactly one corresponding
derivation rule which defines the members of this entity class or the
instances of this relationship class at any time. In addition, if the
derivable component is not timestamped then the corresponding
derivation rule instantiates this component at all times whereas if this
component is time varying then the corresponding derivation rule
obtains instances of this class together with its existence period or
validity period.

In figure 1 an example ERT schema is given.

t:-t_ : (l,l)
.wng.....
product ~

,.,.. ,\

t ..::;

"""- :.••••:IL:

IN'~II: (1.1)

r-----'--,
• TOP SEll.~G I T I
I PRODUCT I I

SALESP£RSON

•••• (1)

PRODUCT

I ""'.N""' ..••
of (1,1)

(1.1)•...

,.-..--..--------,
:0000 :
L~!!~!o~~.~-.!

01 (1••~1

T

B
01 (1,1)

FIGURE 1: AN EXAMPLE ERT SCHEMA

As shown in this schema, entity classes e.g., EMPLOYEE are represented
using rectangles with the addition of a 'time box' when they are time
varying. Derived entity classes e.g., TOP_SELLING_PRODUCT, are
represented as dashed rectangles. Value classes e.g., Name are also
represented with rectangles but with a small black triangle at the
bottom right corner to distinguish them from entity classes. Complex
entity classes e.g., CAR and complex value classes e.g., ADDRESS are

The Entity Relationship Time Model and the Conceptual Rule Language

represented using double rectangles. Relationship classes are
represented using a small filled rectangle (e.g. the relationship class
between MANAGERand CAR),whereas derived relationship classes are
represented using a non filled dashed rectangle (e.g the relationship
between PRODUCTand SALESPERSON).In addition, relationship
involvements and cardinality constraints are specified for each
relationship class. The interpretation of these is for example "a
MANAGERhas one CARand a CARbelongs to only one MANAGER"(the
diagram shows minimum and maximum relationship
involvements).

The notation of the ISAhierarchies e.g., MANAGERISAEMPLOYEEis also
given in figure 1. A distinction is made between different variations of
[SAhierarchies. These are based on two constraints that are usually
included in any ISAsemantics namely, the partial/total ISAconstraint
and the disjoint / overlapping ISAconstraint. It is assumed of course,
that these constraints are applicable to hierarchies under the same
specialisation criterion. These constraints are defined as follows:

• The partial [SA constraint states that there are members in
the parent or generalised entity class that do not belong in
any of its entity subclasses. On the other hand, the total [SA
constraint states that there no members in the parent or
generalised entity class that do not belong in any of its
entity subclasses.

• The overlapping [SA constraint states that the subclasses of
a given parent class under the same specialisation criterion
are allowed to have common entities whereas the disjoint
ISA constraint states that the subclasses of a given parent
class under the same specialisation criterion are not
allowed to have common entities.

The first of these constraints refers to the relationship between the
parent class or generalised class and the child class(es) or specialised
class(es). The second constraint refers to the relationship between
child classes. Based on the above constraints the four kinds of ISA
relationships are supported namely, Partial Disjoint ISA, Total
Disjoint ISA,Partial Overlapping ISAand Total Overlapping ISA.

In summary, the components OfERTare defined as follows:

Entity is anything, concrete or abstract, uniquely identifiable
and being of interest during a certain time period.

10

The Entity Relationship Time Model and the Conceptual Rule Language

Entity Class is the collection of all the entities to which a
specific definition and common properties apply at a
specific time period.

Relationship is any permanent or temporary association
between two entities or between an entity and a value.

Relationship Class is the collection of all the relationships to
which a specific definition applies at a specific time period.

Value is a lexical object perceived individually, which is only
of interest when it is associated with an entity. That is,
values cannot exist in their own.

Value Class is the proposition 'establishing a domain ofvalues.
Time Period is a pair of time points expressed at the same

abstraction level.
Time Period Class is a collectionof time periods.
Complex Object is a complex value or a complex entity. A

complex entity is an abstraction (aggregation or grouping)
of entities, relationships and values (complex or simple). A
complex value is an abstraction (aggregation or grouping)
of values (complex or simple).

Complex Object Class is a collection of complex objects. That
is, it can be a complex entity or a complex value class.

In addition, the following axioms apply to the concept of a relationship
class.

1 An entity can only participate in a relationship if this entity
is already in the population of the entity class specified in
the relationship. Furthermore, the validity period of the
relationship should be a subperiod of the intersection of the
existence periods of the two involved entities.

2 Each entity in a subclass population has also a reference in
the population of its superclasses. In addition, the existence
period of the specialised entity should be a subperiod of the
existence period of the generalised entity.

3 If an entity belongs to a population of an entity class, it
cannot also belong to the population of a value class at any
time and vice-versa. Furthermore, any two entity classes
which are not themselves subclasses of a third entity class
and all have no common subclasses, must be disjoint at any

u

The Entity Relationship Time Model and the Conceptual Rule Language

time point. Note that this definition does not prevent
entities from moving between entity classes during their
lifetime.

The graphical notation for the ERT is summarised in figure 2.

2.2 Time Semantics
In the approach described in this paper, time is introduced as a
distinguished entity class; For example, each entity class can be
timestamped in order to indicate that its history is of importance to
the particular application. The same argument applies also to user
defined relationship classes and IS_PART_OF relationships.

The 'time periods' approach was chosen as the most primitive
temporal notion because it satisfies the following requirements
[Villain, 1982; Ladkin, 1987]:

• Period representation allows for imprecision and
uncertainty of information. For example, modelling that
the activity of eating precedes the activity of drinking
coffee can be easily represented with the temporal relation
before between the two validity periods [Allen, 1983]. If one
tries, however, to model this requirement by using the line
of dates then a number of problems will arise since the
exact start and ending times of the two activities are not
known.

• Period representation allows one to vary the grain of
reasoning. For example, one can at the same time reason
about turtle movements in days and main memory access
times in nanoseconds.

The formal framework employed as the temporal reasoning
mechanism is that of Interval Calculus proposed in [Allen, 1983] and
which was later refined in [Loki, 1986] but with the addition of a
formal calendar system in order to provide for the modelling and
reasoning about the usual calendar periods. In figure 3, the semantics
of the adopted time model is defined using ERT notation.

12

The Entity Relationship Time Model and the Conceptual Rule language

ERT Graphical Notation Explanation

I I ---------- , Entity class A and derived entity class AA ' A, ,
(dashed)L _________ I

~
:- - - -13 - - -:-i: Time m-IJ1~d ~titfi cla~s B.t(a,timestamp nve en tY.c ass as ed). TL _______ L_I

is a svmbolic time oetiod.

II C II II u ~I Complex entity class C and complex
value class D.

I E ~
;- - - - -F- - - - -, Simple value class E and derived value
~__uu_~ class F.MC have relationships to nodes of

type A, B, and D

a b a --. b Relationship (binary) that may connect
mr~2- -riif - '- -" fu2- nodes of type A,B,C or D. a and b are

relationship names (b is inverse of a).
ml and m2 indicate mapping in the
format (x:y) where x,y are non-negative
integers, or N. Non-filled box indicates
derived relationship.

~
a ,ur-'b Time stamped binary relationships.T is a__h' T'mi- symbolic time periodml ml -- --,~.~ ISA relationships Filled box -> total, non-- filled -> partial. Several arrows pointing to

round box indicate disjoint subsets.

FIGURE 2: ERT EXTERNALS

The modelling of information using time periods takes place as
follows. First, each time varying object (entity or relationship) of ERT is
assigned an instance of the built-in class SymbolPeriod. Instances of
this class are system-generated unique identifiers of time periods e.g.
SP!, SP2, etc. Members of this class can relate to each other by one of
the thirteen temporal relations between periods [Allen, 1983].
Instances of the SymbolPeriod class may be displayed in an ERT
schema. If they are not included then a simple T in the time box
indicates that the corresponding object is timevarying.

The two subclasses of the Time Period class are disjoint as indicated in
figure 3. This is because symbol periods are used to model relative
time information while calendar periods model absolute time
information. Thus, both views are accommodated.

In figure 3, the symbol 't represents a temporal relationship and the

13

The Entity Relationship Time Model and the Conceptual Rule Language

symbol n its inverse. In addition, time periods start and end on a tick
and also have a duration expressed in ticks. A tick is defined as
smallest unit of time that is permitted to be referenced and it is usually
the time unit second. The CalendarPeriod class has as instances all
the conventional Gregorian calendar periods e.g., 10/3/1989,
21/6/1963, etc. Members of this class are also related to each other and
to members of the Symbol Period class with one or more of the time
period comparison predicates. The temporal relationships between
calendar periods follow a formal calendar system [Theodoulidis, 1990]
which is based on the work reported by Clifford and Rao in [Clifford &
Rao, 1988] with the addition of the calendar unit 'week'. This was
considered to be necessary since there is often reference to this unit
depending on the particular application domain.

RGURE 3: THE TIME METAMOOEL

Any desirable calendar time unit can be defined as a combination of
already defined calendar units. Thus, expressions like END_OF _MONTH
and NEXT]ORTNIGHT are easily defined. The usual operators are
provided including set operators and comparators. These are
distinguished to those that are applied to elements of the same domain
and those that are applied to elements of different domains [Clifford &
Rao, 1988]. Additional operators like the time period comparison
predicates are also provided together with functions that transform
elements .of one domain onto another. Note however, that the
reasoning always takes place at the lower level of the ones involved.

Other notions of time such as duration and periodic time are also
represented directly in the proposed formalism in addition to the
above specified ones. As a consequence, the expressive power of the
proposed formalism is increased and so does its usability. These

14

The Entity Relationship Time Model and the Conceptual Rule language

notions of time are expressed in the Conceptual Rule Language (CRL)
as constraints upon the structural components and also as constraints
on the behaviour of procedures.

The definition of the duration class is shown in figure 4. Members of
this class are simple durations expressed in any abstraction level.
Each duration consists of an amount of calendar time units expressed
using real numbers and it is uniquely identified by the combination of
its amount and abstraction level. For example, the duration '1,5 year'
is a valid duration according to this definition.

RGURE 4: METAMODEL OF THE DURATION CLASS

The periodic time class is defined in figure 5. AB seen in this figure, a
periodic time has a base which is a calendar period, a duration and
also it can be restricted by a two calendar periods which restrict the
set of values for this periodic time. For example, the expression 'first
week of each month during next year' is a valid definition of a
periodic time according to the above definition. In this case the
calendar period corresponds to "1-7 days", the duration corresponds to
"1 month" and the restricting calendar period is the next year
corresponding to [1/1/1991, 31/12/1991]. A periodic time is uniquely
identified by the combination of its base and its duration.

2.3 Complex Object Semantics
Complex objects can be viewed from at least two different perspectives
[Batini, 1988]. The first one is the representational perspective and
focuses on how entities in the real world should be represented in the
conceptual schema. This entails that objects may consist of several
other objects arranged in some structure. Events in the real world are
then mapped to operations on the corresponding objects. In contrast, if
complex objects are not allowed, like e.g., in the relational model, then

The Entity Relationship Time Model and the Conceptual Rule Language

information about the object is distributed and operations on the object
are transformed to a series of associated operations. The second
perspective is the methodological perspective which means that the
complex object concept is regarded as a means of stepwise refinement
for the schema and for hiding away details of the description. This in
turn, implies that complex objects are merely treated as abbreviations
that may be expanded when needed.

RGURE 5: METAMODEL OF THE PERIODIC TIME CLASS

The basic motivation for the inclusion of the complex entity/value
class in the externals formalism, is to abstract away detail, which in a
particular situation is not of interest. In addition, no distinction is
made between aggregation and grouping, but rather a general
composition mechanism is considered which also involves
relationships! attribu teships.
Graphically, composition is shown by surrounding the components
with a rectangle representing the composite object class. The notation
of a complex object in ERT is shown in figure 2. The complex value
class ADDRESS and the complex entity class CAR of figure 1 may be
viewed at a more detailed level as shown in figure 6 and figure 7
respectively.

ADDRESS

Hac:Componem
1-1

HasComponent

RGURE 6: THE COMPLEX VALUE CLASS ADDRESS IN MORE DETAIL

The components of a complex object comprise one or more
hierarchically arranged substructures. Each directly subordinate
component entity class is part_of-related to the complex entity class

16

The Entity Relationship Time Model and the Conceptual Rule Language

border so that the relationship between the composite object and its
components will be completely defined. Whether the HasComponent
involvement is one of aggregation or grouping, it can be shown by
means of the normal cardinality constraints. That is, if its cardinality
is (0,1) or (1,1), the component is aggregate whereas if its cardinality
is (O,N) or (I,N), the component is a set.

Most conceptual modelling formalisms which include complex objects
[Kim et aI, 1987; Lorie & Plouffe, 1983; Rabitti et aI, 1988], model only
physical part hierarchies i.e, hierarchies in which an object cannot be
part of more than one object at the same time. In the ERT model, this
notion is extended in order to be able to model also logical part
hierarchies where the same component can be part of more than one
complex object.

1-1
Ha..•.ComponeDl

2-'IJasComponenl

AGURE 7: THE COMPLEX ENTITY CLASS CAR IN MORE DETAIL

To achieve this, four different kinds of IS_PART_OF relationships are
defined according to two constraints, namely the dependency and
exclusiveness constraints. The dependency constraint states that
when a complex object ceases to exist, all its components also cease to
exist (dependent composite reference) and the exclusiveness
constraint states that a component object can be part of at most one
complex object (exclusive composite reference). That is, the following
kinds of IS]ART_OF variations [Kim et aI, 1989] are accommodated:

• dependent exclusive composite reference
• independent exclusive composite reference
• dependent shared composite reference
• independent shared composite reference

Note that no specific notation is introduced for these constraints.
Their interpretation comes from the cardinality constraints of the
IS_PART_OF relationship. That is, assume that the cardinality of the

.17

The Entity Relationship Time Model and the Conceptual Rule Language

IS]ART_OF relationship is (0.,[3). Then, a.=O implies non dependency,
a:;tO implies dependency, [3=1 implies exclusivity while f3:;t1 implies
shareness.

The following rules concerning complex objects should be observed:

1 Complex values may only have other values as their
components. In addition, the corresponding IS_PART_OF
relationship will always have dependency semantics unless
it takes part in another relationship.

2 Complex entities may have both entities and values as their
components. Every component entity must be
IS_PART_OF-related to the complex entity.

3 Components, whether entities or values, may in turn be
complex, thereby yielding a composition/decomposition
hierarchy.

Timestamping in a time varying IS_PART_OF relationship is translated
to the following constraints. The dependency constraint in a time
varying IS_PART_OF relationship means that:

The existence periods of the complex object and the component
object should finish at the same time with the validity period of the
IS_PART_OF relationship.

Also, the exclusiveness constraint is translated to:

If an object A is part of the complex objects Band C , then the
period during which A is part of B should have an empty
intersection with the period during which A is part of c.

18

The Entity Relationship Time Model and the Conceptual Rule Language

3. The Conceptual Rule Language
The eRL language expresses constraints on the ERT components in
addition to those specified in the ERT formalism itself. Also, it expresses
the derivation of new information based on existing information. This
is necessary in order to define formulas for the derived ERT
components which they can be used to obtain the values of these
components when needed.
The proposed rule classification schema which is in accordance with
the above identified pieces of information that need to be modelled, is
shown in figure 8. As shown in this figure, the following different
types of rules are distinguished:

• Constraint rules which are concerned with the integrity of
the ERT components. They are further subdivided to static
constraint rules which are expressions that must hold in
every valid state of an ERT database and transition
constraint rules which are expressions that define valid
state transitions in an ERr database. An example of an static
constraint rule might be 'The number of employees
working in a department must be less than 100 at all
times'. An example of a transition constraint rule might be
'The salary of an employee must never decrease' .

• Derivation rules which are expressions that define the
derived components of the ERT model in terms of other ERT
components including derived components. There must be
exactly one derivation rule for each such component. As
the constraint rules, derivations rules are also subdivided to
static derivation rules and transition derivation rules
depending on whether the derived ERT component is
timestamped or not. An example of a static derivation rule
might be 'A supplier is the cheapest supplier for a
particular product if his offer for this product has the
minimum price'. An example of a transition derivation rule
might be 'A customer is the best customer of this month if
the total amount of his orders placed this month is the
maximum'.

19

The Entity Relationship Time Model and the Conceptual Rule Language

3.1. Constraint Rules
As specified previously, constraint rules express restrictions on the ERT
components by constraining individual ERT states and state transitions
where a state is defined as the extension of the database at any tick.
More specifically, static constraint rules apply to every state of the
database and thus, they are time independent. In fact, they represent
definitions of conditions which must hold between different classes
(entity, value or relationship classes) in any individual state.

The purpose of a static constraint rule is to restrict each valid state of
one or more items of data and it can be said to hold (or not hold) simply
on the basis of the extension of the database with respect to a single
state. These rules are also called extensional constraints [Clifford &
Warren, 1983], functional dependency rules and multi valued
dependency rules and their mapping to first order logic formulas is
well defined [Nicolas, 1978;Nicolas & Gallaire, 1978].

Constraint Rules

Static Constraint Rules

Transition Constraint Rules

Derivation Rulcs

Static Derivation Rules

Transition Derivation Rules

RGURE B: CLASSIRCA TlON OF CRl RULES

On the other side, transition constraint rules place restrictions on two
or more states of the database by specifying valid state progressions.
This type of rules is possible to express directly in the context of the
proposed formalism because of the explicit modelling of the evolution
of data. Each transition constraint rule is said to hold (or not hold) only
by examining at least two states of the database. These rules are also

20

The Entity Relationship Time Model and the Conceptual Rule Language

called intensional constraints [Clifford, 1983], dynamic constraints
and constraints upon update operations [Smith & Smith, 1977;
Nicolas & Yazdanian, 1978; Casanova & Bernstein, 1979].
3.1.1 Static Constraint Rules
3.1.1.1 Classification of Static Constraint Rules

As stated previously, static constraint rules are used to describe each
permissible state of the ERT and thus, they are logical restrictions on
the data. A rule in this category always refers to a properly of an
entity class or a value class or a relationship class and it can be either
true or false. The description of this property is done in terms of
imperative or conditional statements which are called state conditions
and refer to classes or instances of classes. In fact, static constraint
rules preserve the integrity of the database by restricting the
operations that can be applied in any individual state and must be true
at any time period.

As mentioned previously, static constraint rules refer to properties of
entity classes, value classes and relationship classes. This reference
mode motivated the proposed classification schema for the static
constraint rules seen in figure 9. According to this schema, the
followingtypes of static constraint rules are distinguished:

• On entity classes. These static constraint rules are
concerned with restrictions on the number of instances of
a particular entity class or the way that the instances of a
specificentity class may be identified.

• On value classes. These static constraint rules are
concerned with restrictions imposed on the domain of
values of a particular value class.

• On relationship classes. These static constraint rules are
concerned with restrictions on the number of instances of a
single entity class that are involved in different
relationships and also, with restrictions between sets of
instances of the same entity class that are involved in one
or more relationships.

Note that in the set of static constraint rules applied to an ERT schema,
belong also constraints on ISA hierarchies and IS]ART_OF relationship
classes. However, these constraints are shown as part of the graphical
notation of the ERT model. The decision to do so reflects the opinion of
the author as to which is the best balance point between expressing

21

The Entity Relationship Time Model and the Conceptual Rule Language

everything in ERT notation and expressing everything in CRL notation.

Static Constraint Rules

Value Constraint Rule

On Relalionshi

Subset Constraint Rule

Disjoint Constraint Rule

FIGURE 9: CLASSIFICATION OF STATIC CONSTRAINT RULES

The classification shown in figure 9, contains a further partitioning of
the static constraint rules depending on whether they are applied on
entity classes, value classes and relationship classes. These will be
introduced explicitly in the followingsections where each type of static
constraint rules is introduced and exemplified.

3.1.1.2 Static Constraint Rules on Entity Classes

The static constraints rules on entity classes are CRL expressions
which restrict the number of instances of a particular entity class or
the way that the instances of a specific entity class may be identified.
AB seen in figure 9, two types of static constraint rules on entity classes
are identified namely, the entity population constraint rule and the
uniqueness constraint rule.

Enfity population constraint rule

The entity population constraint rule is intended to denote the number
of entity instances within a given entity class. Because entity
population is always expressed as a non negative integer number, this
constraint might state the minimum and maximum number of entity
instances. The values between the minimum and maximum integer
numbers. are regarded as contiguous. Exact number of instances is

22

The Entity Relationship Time Model and the Conceptual Rule Language

indicated by having the same minimum and maximum number.
An example of an entity population constraint rule is the following:

Number_OfCDepartment) < 20 and ~ 2

This constraint expresses a restriction on the number of instances of
the entity class DEPARTMENT to be in the range [2,20).

Uniqueness constraint rule

The uniqueness constraint rule expresses more complex uniqueness
constraints on a particular entity class than simple cardinality
constraints by involving more than one relationships in which this
entity class participates. In particular, this type of constraint states
that a combination of involvements from different entity classes and
value classes uniquely identifies the instances of a specific entity class.
Assume for example, the following ERT schema:

of I AddrCSsj
I·N

In this schema, the following uniqueness constraint rule might be
defined:

DEPARTMENTis identified by the DeptName that has

and the Address that is_Iocated_at.

This constraint states that each existing DEPARTMENT is uniquely
identified by the combination of its name and its address.

3.1.1.3 Static Constraint Rules on Value Classes

The static constraints rules on value classes are CRL expressions which
restrict in any possible way the instances of a particular value class in
its involvementCs) with an entity class. No further classification
schema is defined for these constraints because they are dependent on
the particular domain of instances of the value class. Thus, only one
generic type of these is defined which is called value constraint rule.
Value constraint rule

A value constraint rule restricts the values that can be drawn from a
domain. It is applied to the involvementCs) of a value class with an
entity classCes) because this combination provides the unique

23

The Entity Relationship Time Model and the Conceptual Rule Language

identification of a domain ofvalues.

Besides the value domain identification, a value constraint rule must
have a comparison part which includes comparison operator(s) and
corresponding value expression(s) drawn from the same domain.

Consider the following ERT schema:

An example value constraint rule for this schema might state that
each employee who participates in the project with project number
E2469 must have salary in the range (£9,000, £15,000). This rule can
be formulated in CRL as follows:

(Salary thaCis of EMPLOYEE who participates_in PROJECT

which has ProjNo=E2469)

> 9000 and < 15000.

As seen from the above example, the value constraint rule is applied to
the 'Salary of EMPLOYEE' involvement which is further restricted with
the involvements 'EMPLOYEE participates_in PROJECT' and 'PROJECT has
ProjNo=E2469'. This whole expression provides the unique
identification of the domain of values for the salary of an employee. In
the remainder of the rule, two comparison expressions on this domain
are given namely '>9000' and '<15000' assuming of course, that the
domain of salary is non negative integers.

3.1..1..4 Static Constraint Rules on Relationship Classes

The static constraint rules on relationship classes restrict the number
of instances of a single entity class that are involved in different
relationships and also, they express restricting conditions between sets
of instances of the same entity class that are involved in one or more
rela tionships.

As seen in figure 9, four types of static constraint rules on relationship
classes are identified namely, the involvement population constraint

24

The Entity Relationship Time Model and the Conceptual Rule Language

rule, the involvement equality constraint rule, the subset constraint
rule and the disjoint constraint rule.
Involvement population constraint rule

The involvement population constraint rule restricts the minimum
and maximum number of times that an instance of an entity class
can participate in one or more involvements. In its simplest form, this
type of rule restricts the number of times that an instance of an entity
class can relate with the same instance of one another entity class or
value class. For example, the rule

Number_of(EMPLOYEE who participates_in the same PROJECT) < 15

restricts the number of employees for the same project to be always
less than fIfteen. In this form, the involvement population constraint
rule is a specialisation of the cardinality constraints placed on the
relationship class between the entity classes employee and project.

However, these rules can also express more complex population
constraints involving set expressions which restrict the number of
times that an entity class can participate in more than one
involvements. For example, consider the following ERT schema:

A valid involvement population constraint rule for this schema could
be the following:

Number_of(EMPLOYEE who has Salary> 11000
and who participates_in PROJECT

that has ProjNo=E2469
and who worksJor DEPARTMENT

that has
DeptN ame= 'Computation')

> 2 and < Number_of(EMPLOYEE who worksJor DEPARTMENT

25

The Entity Relationship Time Model and the Conceptual Rule Language

that has
DeptN ame='Computation').

As seen in the above constraint, more complex expressions can also be
used to identify the set of instances of the EMPLOYEE entity class and, to
express the maximum number ofthe permitted population of this set.

Involvement equality constraint rule

The involvement equality constraint rule specifies that the set of
instances of an entity class participating in one or more involvements
is equal to the set of instances of the same entity class participating in
a number of different involvements. For example, consider the
following schema:

work..~ for
1-1

employs
T I-N

A valid involvement equality constraint rule for this schema might be:

EMPLOYEE who works3or DEPARTMENT

is equal to
EMPLOYEE who has Salary

This rule states that all the employees who work for a department
must also get paid.

Subset constraint rule

The subset constraint rule specifies that the set of instances of an
entity class participating in one or more involvements is a subset of
the set of instances of the same entity class participating in a number
of other involvements with the same or different entity (or value)
class. Consi~er for example, the following ERT schema:

26

The Entity Relationship Time Model and the Conceptual Rule Language

A valid subset constraint rule for this schema might be:

EMPLOYEE who has Salary> (Salary that_is of MANAGER who
works3or DEPARTMENT.T) - 3000 and who participates_in
PROJECT

is subsetof
EMPLOYEE who works3or DEPARTMENT.T

This rule expresses the constraint that the set of employees who have
salary greater than the salary of their manager minus £3,000, and
who participate in some project, is subset of the set of employees who
work for the same department as that of their manager.

A specific class of these rules refer to involvements with the same
entity (or value) class. For example, consider the following ERT
schema:

I PERSON I~% drives

owns
CAR

A valid subset constraint rule for this schema might be:

PERSON who owns CAR.T

is subsetof

PERSON who drives CAR.T

This rule specifies that the set of persons who own a specific car is
subset of the persons who drive the same car. Note the use of

27

The Entity Relationship Time Model and the Conceptual Rule Language

instantiation for the class CAR which provides the link between the two
expressions by indicating that both must refer to the same instance.

IJUUoint constraint rule

The disjoint constraint rule specifies that a set of instances of an entity
class are disjoint of another set of instances of the same entity class.
The set of instances in both the expressions is of course, defined
through a number of involvements.

In fact, this constraint specifies that the set of instances of an entity
class participating in a number of involvements with certain
instances of other entity (or value) classes, is disjoint from the set of
instances of the same entity class participating in the same number of
involvements with the same instances of the above classes.

For example, consider the following ERT schema:

According to this schema, the following rule is a valid disjoint
constraint:

CAR which is_driven_by EMPLOYEE.A
and which belongs_to COMPANY.B

is disjoint from

CAR which belongs_to EMPLOYEE.A
and which is_used_by COMPANY.B

This rule states that the set of cars which belong to a company and
which are driven by an employee are differently from the cars that
belong to the same employee and used by the same company.

This completes the introduction of the static constraint rules. From
the above, it can be concluded that this set of rules expresses the

28

The Entity Relationship Time Model and the Conceptual Rule Language

possible constraints on the structural components of the proposed
specification formalism in a well defined and classified framework.
3.1.2 Transition Constraint Rules
Transition constraint rules place restrictions on two or more states of
the database by specifying valid state progressions. It is possible to
express directly in the context of the CRL formalism this type of rules
because of the explicit modelling of the evolution of data. Each
transition constraint rule is said to hold (or not hold) only by
examining at least two states of the database.

No detailed classification schema for these is proposed as the one
proposed for the static constraint rules. The reason for this is that it is
difficult to obtain a useful classification of expressions that refer to the
evolution of data. However, transition constraint rules can be also be
seen as applicable to entity classes, relationship classes and value
classes and this can be used to define acquisition heuristics for these.

An example of a transition constraint rule, is the classic mythical rule
'salaries of employees never decrease'. This can be formulated in CRL
as follows:

EMPLOYEE that has Salary.S1 at T1
and that has Salary.S2 at T2

and T1 starts_after T2
and Sl > S2.

Another example of a transition constraint rule is the following:

PRODUCT that is reordered with Quantity.Q1 at T1
and that is reordered with Quantity.Q2 at T2

and T1after T2
and Q1 ~ 0.2 * Q2 + Q2.

The above rule states that when ordering products, the reordered
quantity should not exceed by more than 20% the previous reordered
quantity for the same product. The keyword at is used to denote the
validity period of a relationship whereas the keyword exists_at is
used to denote the existence period of an entity. In addition, a rich set
of time period comparison predicates is provided in order to help the
modelling of relative time expressions in a natural way.

29

The Entity Relationship Time Model and the Conceptual Rule Language

3.2 Derivation Rules
As defined earlier, the derivation rules are expressions that define the
derived components of the ERT model in terms of other E RT
components including derived components. These rules are further
subdivided to static derivation rules and transition derivation rules
depending on whether the derived ERT component is timestamped or
not.

Derivation rules are introduced as a means of capturing structural
domain knowledge that need not be stored and that its value can be
derived dynamically using existing or other derived information.
Note that recursive definitions of derived ERT components is not
supported.
3.2.1 Static Derivation Rules
The static derivation rules are defined as formulas that derive
instances of entity classes or relationship classes which are not
included in an ERT schema in terms of other ERT components. The
purpose of this kind of rules is to specify a way by which one can
obtain the value of an ERT component when needed, instead of having
it explicitly stored. Moreover, these rules are valid in every state of
the database i.e., at all times.

For example, consider the following ERT schema:

According to this schema, the derived entity class FASTEST_CAR could
be defined as follows:

30

The Entity Relationship Time Model and the Conceptual Rule Language

CARC such that CAR.Cthat has MaxSpeed ~ maximum(MaxSpeed thaLis or CAR)

and CAR.Cthat has Acceleration ~ minimum(Acceleration thaLis orCAR).

In the above example, the instances of the derived entity class
FASTEST_CAR are defined from instances of the entity class CAR as the
cars that have the maximum possible speed and the minimum
acceleration.

Note that in the above ERT schema, the derived entity class
FASTEST_CAR is connected to the entity class CAR using an ISA lime Even
if this link is the same as it is the one between non derived entity
classes, its semantic interpretation is different. That is, in the case of
non derived entity classes this link is not explicitly stored but it is
maintained through the use of the derivation formula.

Besides entity classes, relationship classes can also be derived. For
example, in the following ERT schema the derived relationship class
is_cheapest_supplier Jar is defined between the entity classes
SUPPLIER and PRODUCT .

• ~=c~':.apc.!~~p'p~e.!:_!~__
I
I
I
I

The derivation formula for this relationship class could be defined as
follows:

SUPPLIER.S is_cheapest_supplier _for PRODUCT.P

is derived as
SUPPLIERS who makes OFFERC that is_madejor PRODUCT.P
and Price thaCis ofOFFERC = minimum{PricethaCis ofOFFER

which is_madejor PRODUCT.P),
This means that for a specific product the above derivation formula
will give as result a set of suppliers whom offer for this product has the
minimum price compared to the prices of the offers made in total.

31

The Entity Relationship Time Model and the Conceptual Rule Language

Note that for this relationship class no cardinality constraints are
defined. This is not necessary because these are derivable through the
corresponding derivation formula.
3.2.2 TransItion DerIvatIon Rules
The transition derivation rules define how the instances of a time
varying derived ERT component can be obtained by utili sing historical
information stored in the database. Since the derived object (entity or
relationship) class is timestamped, this formula must use the
corresponding time period as a constraining period.

Assume for example, the following ERT schema:

~ ~-::.c~:..ae.eE-!':P'p~cE-!o!..:.a~.

I
I
I
I
I
I
I
I

A valid transition derivation rule for the
is_cheapesCsupplier Jar ..at..

relationship class could be the following:

SUPPLIERS is_cheapest_supplier_for PRODUCT.P at T

is derived as

SUPPLIERS that makes OFFERC at Tl that is_made_for
PRODUCT.P

and Tl during T

and Price .thaCis of OFFER.C=minimum(Price that_is of OFFER

which is_made_bySUPPLIER at T2

and which is_madejor PRODUCT.P

and T2 during T).

This rule states that the cheapest supplier for a product P at a time

32

The Entity Relationship Time Model and the Conceptual Rule language

period T is the one whose offer has the smallest price during the same
time period. Transition derivation rules can also be defined for derived
entity classes. For example, consider the following ERT schema:

r----- ---,--,
I TOP SELLING I I
I PRODUCT I T II _ I I
1- -1 __ .1

The derivation rule for the TOP _SELLING_PRODUCT entity class can be
dermed as follows:

PRODUCT.P isa top_seIling_product at lasCmonth

is derived as

PRODUCT.P that has Stock_quantity=

maximum(Stock_quantity.x1 - Stock_quantity.XI such that
Stock_quantity.XI=Stock_quantity.SI of PRODUCT.P at
first_day_oClasCmonth +

sum(Reorder_quantity.S2 of PRODUCT at T
and T during last_month)

and Stock_quantity.X2 = Stock_quantity.S2 of PRODUCT.P at
last_day _oClast_month).

This rule states that the top selling product for last month can be
derived as the one which sold best during last month. In order to
compute the quantity sold, the stock quantity at the last day of the last
month is subtracted from the sum of the stock quantity at the first day
of the last month and the total reordered quantity of this product for
the last month.

33

The Entity Relationship Time Model and the Conceptual Rule Language

Exactly one transition derivation rule can be specified for each time
varying derived ERT component and in addition, as it can be seen
from the above examples, the transition derivation rules refer always
to the timestamp of the corresponding entity class.

The derived relationship class example uses the time stamp as a
variable which needs to be instantiated in order to obtain the cheapest
supplier of the last month or the last year. On the contrary, the
derived entity class example obtains the top selling product for the last
month only. Thus, if one wants to find the top selling product of the
last year then a different derivation rule can be defined or a new
derived entity class should be specified for this piece of information.
This is consequence of the assumption that only one derivation rule
should be defined for each timevarying derived ERT component.

Consequently, irrespective of the approach followed when defining a
derivation rule, the constraining time period should always refer to
the timestamp periods of the involved entity classes and relationship
classes.

34

The Entity Relationship Time Model and the Conceptual Rule Language

4. Conclusions
The main aim of any conceptual modelling approach is to capture
knowledge about the universe of discourse and represent it in such a
way so as to enable a system developer to reason about this knowledge,
communicate this understanding to end users for validation and
specify the allowable structures of and transitions on the information
base.

This paper discussed the ERT model and the CRL language, developed
in the context of the TEMPORA conceptual framework, and argued that
these models provide the necessary and desirable properties for the
development of database systems which, as well as dealing with
traditional applications, require to deal with applications which
require the explicit modelling of time and complex objects.

The CRL formalism is introduced as a means to capture application
domain knowledge that crosses between the structural part and the
behavioral part of the specification. Thus, the role of the CRL
formalism is concerned with constraints placed upon the elements of
ERT and with the derivation of new information based on existing
information.

Within the CRL formalism different rule types are distinguished in
order to achieve orthogonality of concepts, well defined interface with
level models, more assistance in the rule elicitation process and a
unified requirements specification formalism. Moreover, a textual
layout with natural language semantics was chosen for the CRL
language in order increase its understandability and usability.

In the context of TEMPORA, the process of information systems
development is viewed as a sequence of model-building activities
which require appropriate mechanisms for 'knowledge elicitation',
'knowledge representation' and 'knowledge validation' about the
modelled application domain and their mapping onto corresponding
design and implementation structures. Current work relating to the
issues discussed in this paper is concerned with the development of
CASE tools to support the design process, developing mapping tools
between the conceptual and executable levels and testing the
feasibility of the paradigm on large scale industrial applications.

The Entity Relationship Time Model and the Conceptual Rule language

References
[Abiteboul et al, 1989] Abiteboul, S., Fischer, P.C., Schek, H-J. (eds)

Nested Relations and Complex Objects in Databases, Lecture Notes
in Computer Science #361, Springer-Verlag, 1989.

[Adiba, 1987] Adiba, M.E. Modelling Complex Objects for
Multimedia Databases, in Entity-Relationship Approach: Ten
Years of Expirience in Information Modelling, S. Spaccapietra
(ed), North-Holland, 1987.

[AIm & Snodgrass, 1988] Ahn 1.,Snodgrass R., Partitioned Storage for
Temporal Databases Information Systems, 13(4), 1988.

[Ariav & Clifford, 1984] Ariav G., Clifford J., A System Architecture for
Temporally Oriented Data Management, Proceedings of the 5th
International Conference on Information Systems, Tucson
Arizona, Nov.1984.

[Allen, 1983] Allen J.F. Maintaining Knowledge about Temporal
Intervals CACM,26(11) Nov.1983.

[Batini, 1988] Batini, C. and Di Battiste G. A Methodology for Conceptual
Documentation and Maintenance, Information Systems, 13(3),
pp.297-318, April 1988.

[Ben-Zvi, 1982] Ben-Zvi J., The Time Relational Model, PhD Dissertation,
Univ. of California, L.A., 1982.

[Casanova, 1984] Casanova M.A., Amaral de Sa J.E. Mapping
Uninterpreted Schemes into Entity-Relationship Diagrams: two
Applications to Conceptual Schema Design, IBM Journal of
Research and Development 28(1) pp. 82-94, 1984.

[Chen, 1976] Chen P.P-C. The Entity-Relationship Model-Toward a
Unified View of Data ACM TODS vo1.l no. 1, pp.9-36, March 1976.

[Clifford & Rao, 1988] Clifford J., Rao A., A Simple, General Structure for
Temporal Domains, Proceedings of the IFIP 8/WG8.1 Working
Conference onTemporal Aspects in Information Systems, Sophia
Antipolis, France, May 1987.

[Codd, 1970] Codd, E.F. A Relational Model of Data for Large Shared Data
Banks, CACM, 13(6), June 1970.

[Dadam et al, 1984] Dadam P., Lum V., Werner H.D., Integration of time
versions into a relational database system, Proc. VLDB,
Singapore, 1984.

[Dayal, 1987] Dayal, U. Simplifying Complex Objects: The PROBE
Approach to Modelling and Querying them, Proc. GI Conference
Datenbanksysteme in Buro, Technik und Wissenschaft,
Darmstadt, april 1987.

36

The Entity Relationship Time Model and the Conceptual Rule Languag,

[De Troyer, 1987] De Troyer 0., Meersman R Transforming Conceptual
Schema Semantics to Relational Data Applications, Information
Modelling and Database Management, Ed. Kangassallo H.,
Springer Verlag, 1987.

[Dubois et al, 1986] Dubois E., Hagelstein J., Lahou E. et al The ERAE
Model: A Case Study in Information Systems Design
Methodologies: Improving the Practice, T.W Olle, H.G. Sol and
A.A. Verrijn-Stuart (eds), North-Holland, '1986.

[Hagelstein, 1988] Hagelstein, J. Declarative Approach to Information
Systems Requirements Modelling, Knowledge-Based Systems, 1(4),
Sept 1988.

[Haskin, 1982] Haskin, RL., Lorie, RA. On Extending the Functions of a
Relational Database System, Proc. ACM SIGMOD Conference,
Orlando, 1982.

[Jarke, 1989] Jarke, M. The DAIDA Demonstrator: Development
Assistance for Database Applications, ESPRIT Conference
Proceedings, 1989.

[Kent, 1979] Kent W. Limitations of Record-Based Information
Models, TODS, 1979.

[Khoshafian, 1986] Khoshafian S. N., Copeland G. P. Object Identity,
Proceedings of first Intemational Conference on OOPSLA,
Portland, Oregon, October 1986.

[Kim et aI, 1987] Kim W., Banerjee J., Chou H.T., Garza J.F., Woelk D.
Composite Object Support in Object-Oriented Database Systems, in
Proc. 2nd Int. Conf. on Object-Oriented Programming Systems,
Languages and Applications, Orlando, Florida, Oct. 1987.

[Kim et al, 1989] Kim W., Bertino E., Garza J.F. Composite Objects
Revisited, SIGMODRECORD 18(2),June 1989.

[Ladkin, 1987] Ladkin, P. Logical Time Pieces, AI Expert, Aug, 1987,
pp.58-67.

[Loki, 1986] ESPRIT PI07- LOKI,A Logic Oriented Approach to
Knowledge and Databases Supporting Natural Language User
Interfaces Institute of Computer Science, Research Center of
Crete, Greece, March 1986.

[Lorie & Plouffe, 1983] Lorie R, Plouffe W. Complex Objects and Their
Use in Design Transactions, in Proc. Databases for Engineering
Applications, Database Week 1983 (ACM),San Jose, Calif., May
1983.

[Loucopoulos, 1989] Loucopoulos,P. The RUBRIC Project-Integrating E-
R, Object and Rule-based Paradigms, Workshop session on Design
Paradigms, European Conference on Object Oriented
Programming (ECOOP), 10-13July 1989, Nottingham, U.K.

The Entity RelationshIp Time Model and the Conceptual Rule Language

[Loucopoulos et al, 1990] Loucopoulos,P., McBrien, P., Persson, U.,
Schumaker, F., Vasey, P, TEMPORA - Integrating Database
Technology, Rule Based Systems and Temporal Reasoning for
Effective Software, In Proceedings of ESPRIT '90 Conference,
Brussels, November 1990.

[Loucopoulos et al, 1991] P. Loucopoulos , B. Wangler, P. McBrien, F.
Schumacker , B. Theodoulidis and V. Kopanas, Integrating
Database Technology, Rule Based Systems and Temporal
Reasoning for Effective Information Systems: The TEMPORA
Paradigm, Information Systems Journal, YoU, No 1, April 1991.

[Lum et al, 1984] Lum V., Dadam P., Erbe R, Guenauer J., Pistor P.,
Design of an integrated DBMS to support advanced applications,
Proc. Conf. Foundation Data Organization, Kyoto, Japan, 1985.

[McBrien et al, 1991] McBrien P., Niezette M., Pantazis D., Seltveit A-H.,
Sundin, U., Tziallas G. and Theodoulidis, C. A Rule Language to
Capture and Model Business Policy Specifications, 3rd Nordic
Conference on Advanced Information Systems Engineering
(CAiSE'91), Trondheim, Norway, 1991.

[McKenzie, 1986] McKenzie E., Bibliography: Temporal Databases, ACM
SIGMOD, Vo1.15,No.4, December 1986.

[Nijssen, 1988] Nijssen G.M., Duke D.J., Twine S.M.The Entity-
Relationship Data Model Considered Harmful, 6th Symposium on
Empirical Foundations of Information and Software Sciences,
Atlanta, Georgia (USA),October 1988.

[Rabitti et al, 1988] Rabitti F., WoelkD., Kin W.A Model of Authorization
for Object-Oriented and Semantic Databases, in Proc. Int. Conf. on
Extending Database Technology, Venice, Italy, March 1988.

[Shipman, 1981] Shipman, D.The Functional Data Model and The Data
Language DAPLEX, ACMTODS 6(1), March 1981.

[Shoval, 1987] Shoval P., Even-Chaime M.ADDS: A Systems for
Automatic Database Schema Design Based on the Binary-
Relationship Model, Data and Knowledge Engineering 2(2), North
Holland, 1987.

[Theodoulidis et al, 1990] Theodoulidis, C., Wangler, B. and Loucopoulos,
P. Requirements Specification in TEMPORA, 2nd Nordic
Conference on Advanced Information Systems Engineering
(CAiSE90),Kista, Sweden, 1990.

[Theodoulidis, 1990] Theodoulidis, C.A Declarative Specification
Language for Temporal Database Applications, PhD Thesis,
UMIST, 1990.

[Theodoulidis & Loucopoulos, 1991]Theodoulidis,C. and Loucopoulos,P.
The Time Dimesion in Conceptual Modelling, Information
Systems, 16(3),1991.

[Tsang, 1987] Tsang E.P.K The Consistent Labelling Problem in I

Temporal Reasoning, AAAI-87,Seatle, Washington, 1987.

38

The Entity Relationship Time Model and the Conceptual Rule Language

[Ullman, 1988] Ullman J.D. Principles of Database and Knowledge Base
Systems, Pitman, 1988

[Van Assche et aI. 1988] Van Assche, F., Layzell, P.J., Loucopoulos, P.,
Speltincx, G., Informa.tion Systems Development: A Rule-Based
Approach, Journal of Knowledge Based Systems, September, 1988,
pp.227-234.

[Villain, 1982] Villain M.B. A System for Reasoning about Time
Proceedings of AAAI-82, Pittsburgh, Pa., Aug.1982.

[Villain, 1986] Villain M.B., Kautz H. Constraint Propagation Algorithms
for Temporal Reasoning Proc. of AAAI-86, 1986.

[Wiederhold et al, 1975] Wiederhold G., Fries J.F., Weyl S., Structured
Organization of Clinical Databases, in Proceedings of the NCC,
AFIPS Press, Montvale, New Jersey, 1975.

39

	page1
	page2
	titles
	The Entity Relationship Time Model and

	page3
	page4
	titles
	The Entity Relationship Time Model and
	C. Theodoulidis1, P. Loucopoulos:1, B. Wangler2
	U.K
	Abstract

	page5
	titles
	1. Introduction

	page6
	page7
	page8
	page9
	page10
	titles
	2. The Entity-Relationship-Time Model
	2.1. Basic Concepts and Externals

	page11
	page12
	titles
	t .. ::;
	r-----'--,
	L~!!~!o~~.~-.!
	B

	images
	image1
	image2
	image3
	image4
	image5

	page13
	page14
	titles
	u

	page15
	titles
	2.2 Time Semantics

	page16
	tables
	table1

	page17
	images
	image1

	page18
	titles
	2.3 Complex Object Semantics

	images
	image1

	page19
	images
	image1
	image2

	page20
	images
	image1

	page21
	page22
	titles
	3. The Conceptual Rule Language

	page23
	titles
	3.1. Constraint Rules

	images
	image1
	image2

	page24
	page25
	titles
	Enfity population constraint rule

	images
	image1

	page26
	titles
	Uniqueness constraint rule
	Value constraint rule

	images
	image1

	page27
	titles
	As seen in figure 9, four types of static constraint rules on relationship

	images
	image1

	page28
	titles
	rule, the involvement equality constraint rule, the subset constraint
	Involvement population constraint rule

	images
	image1

	page29
	images
	image1
	image2

	page30
	images
	image1
	image2

	page31
	images
	image1

	page32
	page33
	titles
	3.2 Derivation Rules

	images
	image1

	page34
	images
	image1
	image2

	page35
	titles
	3.2.2 TransItion DerIvatIon Rules
	~ ~-::.c~:..ae.eE-!':P'p~cE-!o! . .:.a~.

	images
	image1

	page36
	images
	image1

	page37
	page38
	titles
	4. Conclusions

	page39
	titles
	References

	page40
	page41
	page42
	titles
	[Ullman, 1988] Ullman J.D. Principles of Database and Knowledge Base

